Cancer Cell:FA基因与RAD51-BRCA1/2联合保护DNA复制叉,抑制肿瘤发生

2012-07-16 songbo 生物谷

7月10日,Cancer Cell杂志报道,范可尼贫血肿瘤抑制因子可与乳腺癌抑癌基因BRCA1等联合发挥DNA复制叉保护功能。 范可尼贫血(FA)患者中的突变基因与DNA修复基因BRCA1和BRCA2/FANCD1相互作用抑制肿瘤的发生,但目前归因于它们的分子功能不能完全解释其所有的生物学行为。 本研究显示FA基因(包括FANCD2)和BRCA1基因具有某些与DNA修复无关的功能,例如保护停滞

7月10日,Cancer Cell杂志报道,范可尼贫血肿瘤抑制因子可与乳腺癌抑癌基因BRCA1等联合发挥DNA复制叉保护功能。

范可尼贫血(FA)患者中的突变基因与DNA修复基因BRCA1和BRCA2/FANCD1相互作用抑制肿瘤的发生,但目前归因于它们的分子功能不能完全解释其所有的生物学行为。

本研究显示FA基因(包括FANCD2)和BRCA1基因具有某些与DNA修复无关的功能,例如保护停滞的复制叉免遭降解。令人惊讶的是,在FANCD2缺陷细胞中,升高RAD51水平或稳定RAD51纤维可恢复对复制叉的保护。

此外,FANCD2介导的复制叉保护与RAD51功能存在上位效应,这揭示了一个意料之外的,连接FA基因与RAD51和BRCA1/ 2乳腺癌抑制因子的复制叉保护信号通路。

总之,研究结果提示,FA基因,RAD51和BRCA1/2蛋白共同构成一个分子网络,以不依赖于DNA修复的方式,发挥着防止基因组不稳定性和抑制肿瘤发生的功能。

doi:10.1016/j.cell.2011.10.017
PMC:
PMID:

A Distinct Replication Fork Protection Pathway Connects Fanconi Anemia Tumor Suppressors to RAD51-BRCA1/2

Katharina Schlacher, Hong Wu, Maria Jasin

Genes mutated in patients with Fanconi anemia (FA) interact with the DNA repair genes BRCA1 and BRCA2/FANCD1 to suppress tumorigenesis, but the molecular functions ascribed to them cannot fully explain all of their cellular roles. Here, we show a repair-independent requirement for FA genes, including FANCD2, and BRCA1 in protecting stalled replication forks from degradation. Fork protection is surprisingly rescued in FANCD2-deficient cells by elevated RAD51 levels or stabilized RAD51 filaments. Moreover, FANCD2-mediated fork protection is epistatic with RAD51 functions, revealing an unanticipated fork protection pathway that connects FA genes to RAD51 and the BRCA1/2 breast cancer suppressors. Collective results imply a unified molecular mechanism for repair-independent functions of FA, RAD51, and BRCA1/2 proteins in preventing genomic instability and suppressing tumorigenesis.

作者:songbo



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (9)
#插入话题

相关资讯

Nature:胰腺癌循环肿瘤细胞转移的Wnt信号

循环肿瘤细胞(circulating tumor cell),通常把进入人体外周血的肿瘤细胞称为循环肿瘤细胞。循环肿瘤细胞的检测可有效地应用于体外早期诊断,化疗药物的快速评估,个体化治疗包括临川筛药、耐药性的检测,肿瘤复发的监测以及肿瘤新药物的开发等。 循环肿瘤细胞(CTCs)从原发位肿瘤组织脱落进入血流,启动远端转移过程。尽管循环肿瘤细胞的数量是非常少的,但这些细胞通过特定的细胞信号通路导致肿

Cancer Dis:间质干细胞通过PGE2信号推动癌症发展

肿瘤相关基质细胞中的间质细胞对肿瘤细胞的生物学行为发挥至关重要作用。近日,Cancer Discovery杂志上刊登的一项最新研究重点研究了癌细胞与间质干细胞(MSCs)之间的相互作用,研究发现间质干细胞被招募到肿瘤基质中,一旦到达肿瘤基质就能够影响肿瘤细胞的表型。 肿瘤细胞来源的白细胞介素1(IL-1)诱导间充质干细胞分泌前列腺素E2(PGE2)。PGE2自分泌的方式运作配合旁分泌的IL-1信

Oncogene:舒林酸(Sulindac)抑制NF-κB介导的肿瘤细胞侵袭

非甾体类消炎药(NSAIDs)已被广泛研究报道有强大的癌症化学预防功效,但其作用机制知之甚少。目前最全面完善的有关NSAIDs的癌预防作用包括抑制肿瘤细胞增殖以及诱导肿瘤细胞的凋亡,但NSAIDs对肿瘤细胞侵袭的影响一直没有得到很好的研究。 近日一则发表在Oncogene杂志上的研究表明,类固醇消炎药舒林酸可以有效的抑制人乳腺癌细胞MDA-MB-231和结肠癌细胞HCT116在体外的侵袭能力

Cancer Cell:CX-5461抑制RNA聚合酶,激活p53治疗血液肿瘤

7月10日,Cancer Cell杂志报道了抑制RNA聚合酶可肿瘤特异性激活p53,从而有望治疗肿瘤。 核糖体RNA基因(rDNA)在RNA聚合酶催化下的转录增加是人类癌症的一个共同特点,但人们仍不清楚它是否是引发恶性表型所必须的。 本研究表明,小分子药物CX-5461(CX-5461是一种有效的小分子rRNA的合成抑制剂)可靶向rDNA转录,从而选择性地杀死体内的B淋巴瘤细胞,同时保持野生型

Cancer Cell:调节因子Nrf2加速肿瘤细胞增殖

癌细胞消耗大量的营养,并维持高水平的合成代谢。最近的研究表明,各种致癌信号途径参与调节代谢。7月10日,Cancer Cell杂志报道,代谢调节因子Nrf2通过促进细胞代谢的重新编程加速肿瘤细胞增殖。 Nrf2是维护氧化还原平衡的关键调节因子。它已被证明有助于癌症的恶性表型,包括异常活跃的增殖能力。然而,Nrf2加速肿瘤细胞增殖的机制尚不完全清楚。 本研究表明,Nrf2可使葡萄糖和谷氨酰胺重新

Cancer cell:VEGF能抑制肿瘤细胞浸润和间质上皮转化(MET)

血管生成(Angiogenesis)是指从已有的毛细血管或毛细血管后静脉发展而形成新的血管,肿瘤血管生成的发生一方面是由于肿瘤细胞释放血管生成因子激活血管内皮细胞,促进内皮细胞的增殖和迁移,另外一方面也是因为内皮细胞旁分泌某些血管生长因子刺激肿瘤细胞的生长。肿瘤细胞和内皮细胞的相互作用自始至终贯穿于肿瘤血管生成的全过程。 通常,肿瘤新生毛细血管是在原有的血管基础上延伸扩展而形成的,其过程类似于典