Cell:科学家发现维持机体健康蛋白水平避免疾病发生的特殊中央机制

2016-09-30 佚名 生物谷

2016年9月29日讯/生物谷BIOON/最近,一项刊登在国际杂志Cell上的研究报告中,来自凯斯西储大学医学院的研究人员通过研究揭示了当阻断DNA转录翻译为蛋白质时细胞所发生的变化,DNA向蛋白质的翻译过程对于维持机体健康的蛋白水平及细胞功能非常关键。文章中研究者对mRNA进行了深入研究,他们想通过研究揭示细胞如何感知阻断制造mRNA产生的时间,以及细胞如何通过协调“细胞机器”来关闭制造mR

2016年9月29日讯/生物谷BIOON/最近,一项刊登在国际杂志Cell上的研究报告中,来自凯斯西储大学医学院的研究人员通过研究揭示了当阻断DNA转录翻译为蛋白质时细胞所发生的变化,DNA向蛋白质的翻译过程对于维持机体健康的蛋白水平及细胞功能非常关键。文章中研究者对mRNA进行了深入研究,他们想通过研究揭示细胞如何感知阻断制造mRNA产生的时间,以及细胞如何通过协调“细胞机器”来关闭制造mRNA的过程。

研究者Jeff Coller博士指出,我们发现,一种名为死亡盒蛋白Dhh1p(DEAD-box protein Dhh1p)的酶类能够评估mRNA的水平并且确定是否细胞需要mRNA或者需要移除mRNA;当细胞需要特殊蛋白时其就会产生能够展现一系列基因表达的mRNAs,但一旦细胞不再需要这些蛋白时,相应的mRNAs就会被破坏,而破坏非必须mRNAs的过程非常复杂,多个细胞酶类能够互相合作来识别mRNA的部分结构并且对其进行“削减”以便mRNA不能够再制造蛋白质,本文研究发现,Dhh1p负责评估mRNAs的水平并且对其靶向作用。

研究者知道,肯定存在一些方法能够互通来阐明遗传代码被细胞机器阅读的速度,而Dhh1p酶能够评估mRNA中的特殊分子序列,核糖体酶类能够将常见的mRNA迅速转化成为蛋白质,而对不常见的mRNA序列则会进行缓慢的翻译过程;研究者Coller还发现,Dhh1p能够将自己吸附到携带次优序列的mRNA分子上,并且同缓慢移动的核糖体发生作用,而且Dhh1p或许是一种缓慢运动核糖体的感受器,而且其能够将这种信息同RNA的衰退机器相互交流。本文研究结果表明,遗传序列或许是mRNA稳定性的关键决定子,甚至序列发生10%的改变都能够影响mRNA分子的命运。

这项研究中,研究者揭示了Dhh1p如何评估mRNA序列从而来指导基因的表达并且确保细胞能够在合适的时间产生蛋白质,研究者Coller说道,本文研究为我们提供了一种新方法来寻找遗传代码,我们曾经通过研究揭示了DNA突变引发蛋白功能改变的机制,而且我们也必须考虑诸如Dhh1p的酶类如何感知核糖体翻译遗传代码的速度;而如今研究者就能够以速度和效率来观察遗传代码,同时更加准确地预测有多少蛋白质是来自于基因表达的产物。

最后研究者表示,目前有很多罕见的遗传性疾病是由RNA过慢或者过快的翻译所引发的,而且我们能够通过操控该过程来放大或降低蛋白质的表达,核糖体阅读遗传代码的速度以及被Dhh1p感知的机制或将帮助研究者寻找到一系列突变类型来帮助来知识目前我们意识不到的疾病状态。

作者:佚名



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (4)
#插入话题

相关资讯

超级细菌在污水中不断进化 或将危及人们的饮食安全

如今,人们已经进入了一个后抗生素时代,很多常见的感染会再一次让人们致命,而一种名为抗生素耐药性的现象也在威胁着现代医药的核心;当抗生素不能够有效杀灭细菌时就会预示着细菌产生抗生素耐药性时代的到来,细菌会对很多药物耐受,甚至在较高剂量下也会产生耐药性。 而抗生素耐药性的现象已经频频出现,面对很多感染性疾病我们束手无策,而且患者也被迫在医院多呆一些时间进行治疗,预计截止到2050年,抗生

用细菌孢子DNA发送秘密信息或成可能

多亏了保护归档数据免受破坏和黑客影响的新方法,“卑微”的细菌孢子正在让人类更加靠近DNA信息储存时代。 对于将数据归档,DNA或许是一项理想的长期解决方案,因为它是如此的致密:1克DNA能容纳1000亿张DVD储存的信息。和人类目前使用的磁盘相比,它还拥有更好的持久性。“磁带每隔6年便需要恢复一次。”来自英国爱丁堡大学的Brendan Largey表示,“对于DNA来说,你可以把它放在你喜欢

科院微生物所有望攻克植物黄萎病

郭惠珊8年前的那个心愿终于实现了。9月26日,《自然—植物》杂志发表了郭惠珊团队的新成果,该研究揭示了他们利用基因“小剪刀”——RNAi创建的抗黄萎病棉花新品系,来有效狙击棉花“癌症”黄萎病的秘密。 2008年8月,中科院微生物所研究员郭惠珊第一次在新疆看到绵延不断的棉田。然而,她看到的不是令人欣喜的丰收景象,而是一片枯黄,遍地落叶,还有棉农绝望的面孔。这一幕像钉子一样扎在她心里,让她疯

PLOS Genet:起来吧!新研究发现耐力训练可以改变基因活性

最近,来自瑞典卡罗林斯卡医学院的研究人员报告称耐力训练能够改变许多基因的活性。相关研究结果发表在国际学术期刊PLOS Genetics上。 常规的耐力训练对健康有益,可以预防心血管疾病,糖尿病,肥胖及其他健康问题。但是科学家们对于分子水平上发生了什么样的变化还不是特别清楚。 卡罗林斯卡医学院的研究人员分析了耐力训练前后肌肉组织中RNA的变化情况。他们发现与2600个基因有关的大约340

多篇文章详细解读如何利用基因疗法来攻克癌症

基因治疗是指将外源正常基因导入靶向,以纠正或补偿因基因缺陷或异常引起的疾病,从而达到治疗多种疾病的目的。上个世纪九十年代,基因疗法首次用于治疗“重度联合免疫缺陷症”(SCID),至今已经进行了两千余例的人体试验。早期临床试验结果表明,基因疗法在治疗白血病、血友病、地中海贫血、帕金森症、阿尔茨海默病等上效果显著,甚至能够令盲人重获光明,而更多的动物模型试验显示,基因治疗大有根治更多顽疾的

Nature:基因和环境谁对宝宝出生体重影响更大?

最近一项由多个研究机构进行的一项大型研究发现基因差异可以帮助解释为何有些宝宝一出生就与别的宝宝存在显著的体重差异。同时还揭示了基因差异如何将一个人早期生命阶段的生长情况与生命后期阶段患2型糖尿病以及心脏疾病的风险联系起来。这项发表在 Nature上的研究为预防和治疗这些疾病找到一些新方向。 研究人员表示,至少六分之一的出生体重差异与宝宝之间的基因差异有关。这是包括母亲孕期吸烟以及怀孕之前