有序多分类Logistic回归SPSS实战操作教程

2017-05-12 MedSci MedSci原创

1、问题与数据 在某胃癌筛查项目中,研究者想了解首诊胃癌分期(Stage)与患者的经济水平的关系,以确定胃癌筛查的重点人群。为了避免性别因素对结论的混杂影响,研究者将性别(Sex)也纳入分析(本例仅为举例说明如何进行软件操作,实际研究中需控制的混杂因素可以更多)。研究者将所有筛查人群的结果如表1,变量赋值如表2。 表1. 原始数据 表2. 变量赋值情况 2、对数据结构的分析

1、问题与数据 在某胃癌筛查项目中,研究者想了解首诊胃癌分期(Stage)与患者的经济水平的关系,以确定胃癌筛查的重点人群。为了避免性别因素对结论的混杂影响,研究者将性别(Sex)也纳入分析(本例仅为举例说明如何进行软件操作,实际研究中需控制的混杂因素可以更多)。研究者将所有筛查人群的结果如表1,变量赋值如表2。 表1. 原始数据 表2. 变量赋值情况 2、对数据结构的分析 该设计中,因变量为四分类,且分类间有次序关系,针对因变量为分类型数据的情况应该选用Logistic回归,故应采用有序多分类的Logistic回归分析模型进行分析。 有序多分类的Logistic回归原理是将因变量的多个分类依次分割为多个二元的Logistic回归,例如本例中因变量首诊胃癌分期有1-4期,分析时拆分为三个二元Logistic回归,分别为(1 vs 2+3+4) 、(1+2 vs 3+4)、(1+2+3 vs 4),均是较低级与较高级对比。需注意的是,有序多分类Logistic回归的假设是,拆分后的几个二元Logistic回归的自变量系数相等,仅常数项不等。其结果也只输出一组自变量的系数。 因此,有序多分

作者:MedSci



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (30)
#插入话题
  1. 2018-04-10 12257611m83暂无昵称

    qw请问我数值型变量转换成有序变量.划分的节点怎么定.可以算出来还是自己随便定义?谢谢

    0

  2. 2017-08-17 184****9840

    学习了谢谢分享

    0

  3. 2017-05-23 静静同学

    有用,谢谢

    0

相关资讯

生存分析与SPSS实例操作演示

一、生存分析基本概念 1、事件(Event) 指研究中规定的生存研究的终点,在研究开始之前就已经制定好。根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。 2、生存时间(Survival time) 指从某一起点到事件发生所经过的时间。生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再

主成分分析与因子分析及SPSS实例演示

一、主成分分析 (1)问题提出 在问题研究中,为了不遗漏和准确起见,往往会面面俱到,取得大量的指标来进行分析。比如为了研究某种疾病的影响因素,我们可能会收集患者的人口学资料、病史、体征、化验检查等等数十项指标。如果将这些指标直接纳入多元统计分析,不仅会使模型变得复杂不稳定,而且还有可能因为变量之间的多重共线性引起较大的误差。有没有一种办法能对信息进行浓缩,减少变量的个数,同时消除多重共线性?

倾向评分匹配的SPSS、R和Stata实现方法

其中,(pscore)是在第二步中生成的那个记录对象概率的变量,noreplacement是一个选项,使得任何读了研究生的观察对象的对照对象都具有唯一性,换言之,只能1对1匹配。 另一个案例(在版本:12)net install psmatch2use "C:\Users

SPSS结果输出表格如何改为专业的三线表

经常听到许多使用SPSS进行数据分析的人,抱怨SPSS结果输出的表格太难看,不是统计教科书上所说的三线表,每次要用还得自己花很多时间进行再次编辑,实在让人恼火得不行,其实是你错怪SPSS了,做为世界排名第二的统计分析软件,这个毛病肯定不会有的,只不过你不知道如何设置罢了,跟着松哥学统计,5秒钟学会修改专业的统计表。 一、SPSS默认安装,进行两独立t,结果是这样的 典型的不是三

分层回归分析理论及意义,以及SPSS操作演示

分层回归(hierarchical multiple regression),也称层次回归,其实是对两个或多个回归模型进行比较。我们可以根据两个模型所解释的变异量的差异来比较所建立的两个模型。一个模型解释了越多的变异,则它对数据的拟合就越好。假如在其他条件相等的情况下,一个模型比另一个模型解释了更多的变异,则这个模型是一个更好的模型。两个模型所解释的变异量之间的差异可以用统计显著性来估计和检验

加权回归的SPSS操作演示

加权回归直线回归简单来说,这个过程其实是在先拟合出一条曲线,然后再用这个曲线去预测需要预测的点。但是如果这个曲线拟合得不好(或者说样本数据含有大量噪音),那么这个预测结果就会很差。 局部加权线性回归 对于一个数据集合(x0,y0),(x1,y1),⋯,(xm,ym),我们预测它在x点时对应的y值时,如果采用的是传统的 线性回归模型,那么: Fit θ to mininize ∑i(y(i