JMCB:中国科学家应用CRISPR破解基因组“未解之谜”

2015-08-14 佚名 生物谷

近日,来自上海交通大学的研究人员在国际学术期刊JMCB发表了一项最新研究进展,他们发现应用CRISPR/Cas9技术可以轻松实现对DNA片段的倒位和重复,对于基因组中存在的大量DNA调控元件和大量基因簇的功能研究具有一定意义。研究人员指出,人类基因组中包含了几百万个DNA调控元件和大量的基因簇,但其中大部分都没有进行过实验检测,还有大量基因组"未解之谜"等待人类去破解。DNA编辑技术CRISPR/

近日,来自上海交通大学的研究人员在国际学术期刊JMCB发表了一项最新研究进展,他们发现应用CRISPR/Cas9技术可以轻松实现对DNA片段的倒位和重复,对于基因组中存在的大量DNA调控元件和大量基因簇的功能研究具有一定意义。

研究人员指出,人类基因组中包含了几百万个DNA调控元件和大量的基因簇,但其中大部分都没有进行过实验检测,还有大量基因组"未解之谜"等待人类去破解。

DNA编辑技术CRISPR/CAS9近年来风生水起,该系统是目前发现存在于大多数细菌与所有的古菌中的一种后天免疫系统。由于CRISPR/Cas技术作为一种最新涌现的基因组编辑工具,能够完成RNA导向的DNA识别及编辑,为构建更高效的基因定点修饰技术提供了全新的平台,受到众多科学家的追捧。

在该项研究中,研究人员利用CRISPR系统和两条sgRNA在人类和小鼠的基因组中轻松实现对靶向DNA片段的倒位和重复。研究人员利用该技术可以在培养的人类细胞和小鼠中对几十bp到几千kb大小的DNA片段实现高效精确倒位。同时通过两条同源染色体上Cas9诱导的双链断裂,利用CRISPR技术还可以实现DNA片段的重复和删除。除此之外,研究人员还利用CRISPR技术获得了携带精确倒位,重复和删除不同尺寸DNA片段的等位基因的小鼠。

最后,为证明该技术在DNA调控元件功能研究方面的作用,研究人员将CRISPR方法应用到Pcdhα基因簇的调控元件功能研究中,发现了对Pcdhγ基因簇成员调控的新功能。

总的来说,这项研究表明应用CRISPR/Cas9这种简单高效的方法能够大大促进对DNA调控元件及基因簇功能的研究,这对于破解人类基因组中的大量"未解之谜"具有很大助益。

原文出处:

Jinhuan Li, Jia Shou1, Ya Guo, Yuanxiao Tang.et al.Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9.JMCB.2015

作者:佚名



版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (5)
#插入话题
  1. 2016-02-11 zxxiang
  2. 2015-08-15 yuandd
  3. 2015-08-14 medcardio

    这个研究的报道稍微有些夸张,应该要实事求是,一些会比较合适

    0

相关资讯

Nature:再掀学术伦理之争!中国科学家瞄准人类胚胎基因改造

中国科学家走在世界的第一位,首次报道成果对人类胚胎的基因进行改造。该项研究结果在线发表在最新一期 Protein & Cell 杂志上。这一消息正式确认了科学界关于对人类胚胎基因研究工作正在开展的谣言,而后者因伦理问题在上个月引起了激烈的讨论。 在这项由中山大学基因功能学教授Jun-jiu Huang所主持的研究中,研究人员利用来自当地生殖医疗机构“不能存活”的胚

PNAS:用CRISPR解决世界性难题

近年来致病菌的抗生素抗性越演越烈,这已经成为了一个世界性的难题。科学家们日前在CRISPR技术的基础上,开发了一个双噬菌体系统,能够使耐药菌敏感化,并且有选择的杀死它们。这项研究发表在五月十八日的美国国家科学院院刊PNAS杂志上。传统的噬菌体疗法是用一种或多种噬菌体去感染和裂解相应的细菌菌株。不过,把噬菌体递送到被感染的组织还存在一定的困难。Tel Aviv大学Udi Qimron等人开发的这种改

CRISPR、RNAi、TALEN一张图教你做出正确选择

研究基因功能最常见的方法是,减少或者阻断基因表达,然后进行表型分析。十多年来,RNAi一直是这一领域的王者,然而新兴技术的涌现(尤其是CRISPR技术)正在逐渐瓦解RNAi的统治地位。日新月异的技术发展为生物学研究提供了越来越大的助力,也给研究者们带来了一个有些纠结的问题,“到底应该选择那一种技术呢”。  1998年Andrew Fire 和Craig Mello两位科学家首次

全新基因编辑技术引发研究领域巨变

美国旧金山格莱斯顿研究所遗传学家Bruce Conklin一直试图找到DNA变异如何影响不同的人类疾病,但使用的工具有些笨重。当他研究来自病人的细胞时,很难知道哪个序列对疾病来说很重要,哪些只是背景噪音。同时,将突变植入细胞是一项昂贵且费力的工作。 2012年,他通过阅读了解到一项最新发表的、被称为CRISPR的技术。它能使研究人员快速改变几乎任何生物体的DNA,包括人类。此后不

Nat Biotechnol:光控基因编辑CRISPR/Cas9系统问世

日本的科学家们已经开发出一种光活化的Cas9核酸酶来控制CRISPR诱导的基因编辑,一个“开关”即可激活。这个光激活的Cas9核酸酶可以为研究者在RNA诱导的核酸酶研究上提供更大的空间和时间的控制。这篇研究在线发表在最新的Nature Biotechnology中。 来自加州大学的干细胞生物学家Paul Knoepfler评论这项研究时表示:“这是一种非常有效的新系统,通过光精确地控制基因编

Nature:CRISPR技术又有新突破!

来自哈佛医学院和麻省总医院的研究者们在最新一期Nature杂志上发表了他们新改进的CRISPR-Cas9技术,识别序列的范围更大,识别也更为精准。文章第一作者Benjamin Kleinstiver介绍说新技术里的Cas9变种可以识别那些野生型Cas9无法修饰的人类和斑马鱼基因的位点,这使得CRISPR技术在多变的基因组里识别范围大大增加。CRISPR-Cas9核酸酶由Cas9蛋白和20个核苷酸长